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Question 1 [25 marks] 

1.1 Briefly explain the following terminologies as they are applied to probability theory. 
(a) Power set P(S) [2] 
(b) Boolean algebra B(S) [3] 
(c) o algebra [3] 
(d) Discrete random variable X [3] 

1.2 Show that if m is a measure on B(S), then cm is a measure on 5(.S), where (cm)(A) = c.m(A) 
and c > 0 [4] 

1.3 An investment firm offers its customers municipal bonds that mature after varying numbers 

of years. Given that the cumulative distribution function of T, the number of years to 

maturity for a randomly selected bond, is 

0 fort <1, 

4 1<t<8, 

a O<t <7, 

lL t£2=%, 

find 

(a) P(l4<t <6); [3] 
(b) P(t < 5|t > 2). [5] 
(c) Find the median value of T (2 

Question 2 [27 marks] 

2.1 State and prove Markov inequality. (3] 

2.2 Let X be a continuous random variable with mean p and variance 0”. Also, let k be some 

positive integer. Show that P[|X — p| < ko] > 1— % (i. e; Chebyshev’s theorem). (12] 

2.3 A dealer’s profit, in units of 5000 Namibian dollars, on a new automobile is a random variable 

X having density function 

sea)={ 07 O0<a2<1 
0 elsewhere 

(a) Find the variance of the dealer’s profit. [4] 
(b) Show that Chebyshev’s theorem holds for k = 2 with the above density function. [4] 

2.4 Let X and Y be random variables with joint density function f(z, y) and means px and py, 

respectively. Show that the covariance between X and Y is given by 

oxy = E(XY) — pxpy. [4]



Question 3 [23 marks] 

3.1 Show that the moment-generating function of a random variable X, which follows a binomial 

distribution with parameters n and p, is given by 

(e’p + q)” 

[5] 

3.2 Let X be a random variable whose moment-generating function, denoted by mx(t), exists. 

Show that its third cumulant (ks) is related to its first, second, and third moment by the 

following relationship k3 = 3 — 3p + 23. (6] 

3.3 (a) Show that the cumulant-generating function of a geometric random variable (X), with a 
probability of success denoted by p, is Kx(t) = Inp +t — In{1 — e'(1 — p)]. (6] 
(b) Use the cumulant-generating function provided above to find the variance of X. (6] 

Question 4 [25 marks] 

4.1 (a) Determine the value c so that the following function can serve as a probability distribution 
of the discrete random variable X: 

_ f c2?+4) ,x=0,1,2,3 
hey { 0 , otherwise 

[2] 
(b) Assuming the value of c is 3. find the characteristic function of X and use it to find the 
mean of X. (6] 

4.2 Let X; and X2 be independent random variables with probability density functions given by 

e™ ,4,>0,7=1,2 

P(t) = { 0 , otherwise 

Find the: 

(a) joint probability density function of Yj = X; + X_ and Y2 = Se (10} 
(b) covariance between Y; and Y%. (7] 

END OF QUESTION PAPER


